skip to main content


Search for: All records

Creators/Authors contains: "Vahdat, Amin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    There is now a significant and growing functional gap between the public Internet, whose basic architecture has remained unchanged for several decades, and a new generation of more sophisticated private networks. To address this increasing divergence of functionality and overcome the Internet's architectural stagnation, we argue for the creation of an Extensible Internet (EI) that supports in-network services that go beyond best-effort packet delivery. To gain experience with this approach, we hope to soon deploy both an experimental version (for researchers) and a prototype version (for early adopters) of EI. In the longer term, making the Internet extensible will require a community to initiate and oversee the effort; this paper is the first step in creating such a community. 
    more » « less
  2. Cloud services are deployed in datacenters connected though high-bandwidth Wide Area Networks (WANs). We find that WAN traffic negatively impacts the performance of datacenter traffic, increasing tail latency by 2.5x, despite its small bandwidth demand. This behavior is caused by the long round-trip time (RTT) for WAN traffic, combined with limited buffering in datacenter switches. The long WAN RTT forces datacenter traffic to take the full burden of reacting to congestion. Furthermore, datacenter traffic changes on a faster time-scale than the WAN RTT, making it difficult for WAN congestion control to estimate available bandwidth accurately. We present Annulus, a congestion control scheme that relies on two control loops to address these challenges. One control loop leverages existing congestion control algorithms for bottlenecks where there is only one type of traffic (i.e., WAN or datacenter). The other loop handles bottlenecks shared between WAN and datacenter traffic near the traffic source, using direct feedback from the bottleneck. We implement Annulus on a testbed and in simulation. Compared to baselines using BBR for WAN congestion control and DCTCP or DCQCN for datacenter congestion control, Annulus increases bottleneck utilization by 10% and lowers datacenter flow completion time by 1.3-3.5x. 
    more » « less
  3. Packet scheduling determines the ordering of packets in a queuing data structure with respect to some ranking function that is mandated by a scheduling policy. It is the core component in many recent innovations to optimize network performance and utilization. Our focus in this paper is on the design and deployment of packet scheduling in soft-ware. Software schedulers have several advantages over hardware including shorter development cycle and flexibility in functionality and deployment location. We substantially improve current software packet scheduling performance,while maintaining flexibility, by exploiting underlying features of packet ranking; namely, packet ranks are integers and, at any point in time, fall within a limited range of values.We introduce Eiffel, a novel programmable packet scheduling system. At the core of Eiffel is an integer priority queue based on the Find First Set (FFS) instruction and designed to support a wide range of policies and ranking functions efficiently. As an even more efficient alternative, we also pro-pose a new approximate priority queue that can outperform FFS-based queues for some scenarios. To support flexibility,Eiffel introduces novel programming abstractions to express scheduling policies that cannot be captured by current, state-of-the-art scheduler programming models. We evaluate Eiffel in a variety of settings and in both kernel and userspace deployments. We show that it outperforms state of the art systems by 3-40x in terms of either number of cores utilized for network processing or number of flows given fixed processing capacity 
    more » « less